America’s beaches are often unsafe for swimming

America’s beaches provide us with places to escape everyday life, soak up the sun, and cool off in the hot summer months. Yet, nearly 50 years after the Clean Water Act set the goal of making all of our waterways safe for swimming, Americans visiting their favorite beach are still met all too often by advisories warning that the water is unsafe for swimming.

An analysis of fecal indicator bacteria sampling data from beaches in 29 coastal and Great Lakes states and Puerto Rico reveals that 386 beaches – nearly one of every eight surveyed – had potentially unsafe levels of pollution on at least 25 percent of the days that sampling took place last year. More than half of all the 3,172 beaches reviewed were potentially unsafe for swimming on at least one day.

Beaches were considered potentially unsafe if fecal indicator bacteria levels exceeded the U.S. Environmental Protection Agency’s “Beach Action Value” associated with an estimated illness rate of 32 out of every 1,000 swimmers.

Community efforts to reduce pollution at its source have made beaches dramatically cleaner and safer.

Water quality tests indicate potentially risky pollution in every coastal and Great Lakes state.

Runoff can pollute waterways and beaches.

Safe for Swimming?
Pollution at Our Beaches and How to Prevent It

An analysis of thousands of coastal and Great Lakes beaches shows that water pollution often poses risks to our health. By tackling pollution at its source – including from runoff, sewers, and agriculture – we can ensure that beaches continue to be a summer haven, now and in the future.
Fecal contamination endangers public health

Human contact with contaminated water can result in gastrointestinal illness as well as respiratory disease, ear and eye infection, and skin rash.

Each year in the U.S., swimmers in oceans, lakes, rivers and ponds suffer from an estimated 57 million cases of recreational waterborne illness.

Our beaches are at risk

The pollution that threatens our health is often the product of human activity, including urban runoff, aging sewer systems, and factory farms.

- **Sprawling development** creates impervious surfaces that carry pollution directly into waterways and has destroyed natural areas like wetlands that protect beaches from contamination. Between 1996 and 2010, U.S. coastal regions lost 982,000 acres of wetland and millions of acres of forest.

- **America’s sewage infrastructure is deteriorating and outdated** - suffering tens of thousands of leaks each year. Many communities still use combined sewers that can discharge sewage directly to waterways during heavy rainfall.

- **The rise of factory farms** has resulted in large concentrations of livestock manure that cannot be stored safely and is often overapplied to crops. Often, rainfall washes excess manure from cropland into our waterways where it can put swimmers’ health at risk.

With resources, communities can keep beaches safe

Communities around the country have taken action to prevent pollution.

- At Bristol Town Beach in Rhode Island, green infrastructure reduced runoff and ended a long run of summers with beach closures.
- At Avalon Beach in California, investments in sewage infrastructure helped take the beach off environmental group Heal the Bay’s “Beach Bummer List.”
- In Tillamook County, Oregon, adoption of best practices at dairy pastures improved water quality in the Wilson River and Tillamook Bay.

Policies to protect our beaches

Policymakers should protect our beaches from unsafe pollution, including by:

- Increasing funding to fix sewage systems and install natural and green infrastructure.
- Protecting wetlands, which filter out pollutants like bacteria.
- Enacting moratoriums on new or expanded industrial livestock operations.

Policymakers should also ensure that swimmers have information to protect their health by expanding funding for beach testing to ensure adequate testing at all beaches.

Find more information and the full report online:
www.environmentamericacenter.org

Photo credits, front to back: Pgianv/Stockphoto; USGS, Tom Gally via Wikimedia (public domain), staff.