Slicks and Risks

The oil spill in the Gulf of Mexico continues to worsen as of this writing. Oil is still flowing from the well drilled by the now-destroyed Deepwater Horizon rig off the coast of Louisiana, at a rate that government officials now acknowledge is five times faster than previously thought. Oil is likely to start washing ashore on Louisiana’s sensitive coastal marshes as soon as tomorrow.

Media coverage of the disaster has been horrifying, not just because of the possible scale of the impacts on beaches and wildlife, but also because of the seeming nonchalance of the media and public in the face of it. Only today, days after it became apparent that the well’s owners were grasping at straws for ways to contain it and that the environmental impacts were likely to be severe, has the world begun to sit up and take notice. As a former reporter, it frustrates me to no end.

This is exactly the kind of disaster environmentalists have warned about for decades – a disaster that the oil industry has repeatedly told the public was virtually impossible. And it is occurring as we speak.

Obviously, this event should cause everyone – from the Obama administration on down – to reconsider the wisdom of opening up more of the East Coast and Alaska to offshore drilling.
But the Gulf disaster raises one other issue that is critical – and whose implications extend well beyond the debate about offshore drilling.

Deep offshore drilling is an inherently risky activity that relies on technological failsafes to avert environmental catastrophe. The chances of those failsafes … uh, failing … is small. But the consequences of even a single failure are potentially massive, as residents of the Gulf Coast may soon find out.

Oil drilling is not alone in this regard – high risk/low probability events are a potential problem with many technologically complex activities. Think about nuclear power plants. Or interconnected systems such as the electric grid. Or the introduction of new toxic chemicals into the marketplace. Or the creation of genetically engineered organisms.

It is no coincidence that on so many of these issues, environmentalists – who have seen this story play out before with Three Mile Island, Bisphenol-A in tomato cans, the collapse of the Northeast electricity grid in 2003, ad infinitum – are the ones to raise alarms, while industry (joined, often, “sensible” people in the media, academia or politics) counsels that the risk of a mishap is small and that, even if one were to occur, the impacts will be easy to contain.

It also doesn’t take too much imagination to replace the engineers frantically deploying robots, giant underwater cones, and even “controlled burns” of the oil slick at sea with those scrambling to find ways to bury carbon dioxide from coal plants underground or considering seeding the atmosphere with particles to ameliorate the impacts of global warming.

Technological fixes and redundant safety systems can reduce the chances of high-risk events. But as Charles Perrow’s book, Normal Accidents, theorizes, technological solutions can never completely eliminate the risk, and can sometimes make things worse. The problem, as Perrow puts it, is that we have married incomprehensibly complex organizations and technological systems with exceedingly risky activities, making failure of those systems not only possible, but ultimately unavoidable.

Or, to sum it up a different way: sh*t happens. It’s an iron law of nature. And the accident in the Gulf reminds us that, when it does happen in the midst of an inherently risky endeavor, the implications can be severe.

Which brings us back to the choices we as a nation must make about our energy future. On one hand are large-scale, inherently risky activities such as drilling for oil far offshore, burying millions of metric tons of carbon dioxide underground, or firing up dozens of new nuclear power plants. On the other hand are small, distributed, less risky options such as solar power, wind power, and energy efficiency.

Beyond questions of cost or viability, it is important for decision-makers to consider worst-case scenarios when evaluating these options. All in all, for example, I would much rather have something go wrong with a single wind turbine in Nantucket Sound than a single oil well in the Gulf.

We’ve often argued in our work that the less risky options are capable of addressing global warming and solving our energy problems – and can do so at lower long-term cost. But it is also true that these options are beneficial in and of themselves, representing a million small bets on a better future rather than a single, large “all-in” wager that puts the future of our environment at risk.

Satellite imagery of the Deepwater Horizon oil spill: NASA

Authors

Tony Dutzik

Associate Director and Senior Policy Analyst, Frontier Group

Tony Dutzik is associate director and senior policy analyst with Frontier Group. His research and ideas on climate, energy and transportation policy have helped shape public policy debates across the U.S., and have earned coverage in media outlets from the New York Times to National Public Radio. A former journalist, Tony lives and works in Boston.